Softmax is a method to obtain probabilities from outputs. It basically is a generalization of the
sigmoid (logistic) loss to more than two classes. We can use it for binary classification as well.
The idea of softmax is to take the outputs in the final layer and convert them to probabilities.

Suppose the outputs in the final layers are z, = erx and z,= szx. Then the softmax

V4 V4
1 2 Z

z
o __ € __ € _ 1 2
conversion is S1 = S2 W here Z e + e .

If we assume that s2 = 1-s1 then the above is the same as logistic regression.

Homework: can you prove the above statement?

To understand the origins of logistic and softmax see Section 10.7 in Introduction to Machine
Learning by Alpaydin Second Edition. We provide a brief recap here from Alpaydin’s textbook.

10.7 Logistic Discrimination

10.7.1 Two Classes

rocistic In logistic discrimination, we do not model the class-conditional densities,
DISCRIMINATION p(x|C;), but rather their ratio. Let us again start with two classes and
assume that the log likelihood ratio is linear:

(10.18) log PXICL) _\pry Lo

p(x|C2)

This indeed holds when the class-conditional densities are normal (equa-
tion 10.13). But logistic discrimination has a wider scope of applicability;
for example, x may be composed of discrete attributes or may be a mix-
ture of continuous and discrete attributes.

Using Bayes’ rule, we have

P(Cq|x)
1-P(C1]x)
p(x|Cy) 1 P(Cy)

+ 10
p(x|C2) B P(Cy)
wlx +wy

logit(P(Cy1|x)) = log

(10.19)

(10.20)

(10.21)

(10.22)

CROSS-ENTROPY

(10.23)

(10.24)

where

P(C
wo = wj + log PECS
Rearranging terms, we get the sigmoid function again:

1
1+ exp[—(wTx + wp)]

y =P(C1|x) =

as our estimator of P(Cy|x).

Let us see how we can learn w and wp. We are given a sample of two
classes, X = {x',r'}, where ¥! = 1if x € Cit and r' = 0if x € C».
We assume rf, given x!, is Bernoulli with probability y! = P(C;|x!) as
calculated in equation 10.21:

r'|x" ~ Bernoulli(y")

Here, we see the difference from the likelihood-based methods where
we modeled p(x|C;); in the discriminant-based approach, we model di-
rectly r|x. The sample likelihood is

liw,wg|X) = l_[(yr)(rr)(l _ yt)(l—rf)
r

We know that when we have a likelihood function to maximize, we can
always turn it into an error function to be minimized as E = —logl, and
in our case, we have cross-entropy:

E(w,wo|X) == > rflogy' + (1 —r')log(1l — y")
t

Because of the nonlinearity of the sigmoid function, we cannot solve di-
rectly and we use gradient descent to minimize cross-entropy, equivalent
to maximizing the likelihood or the log likelihood. If y = sigmoid(a) =
1/(1 + exp(—a)), its derivative is given as

dy
and we get the following update equations:
oE rt 1-rt\ ot
Aw; = Maw, = ”Z(yr - 1_yr)y (1 -y)x;
=) (r'=yHxt,j=1,....d
t

OE
Awg = —nm=n2(r’t—yt)
t

For multiple classes the logistic loss becomes softmax.

Now that we have reviewed logistic loss let us write out the objective of a single layer neural
network shown below.

The least squares loss is given by f = ((Wl' w, w3)T(o(sTx), o(uTx), o(vTx)) — y)zwhere o(x) is
an activation function such as sigmoid or relu. In this document we let o(x) be the sigmoid
activation: o(x) = 1/(1 + e).

Instead of minimizing the difference between true and predicted values we can try to maximize
the probability of the output. First we have to define this probability. Fortunately the logistic loss
gives us a straightforward way to convert outputs to probabilities. Thus we write the loss as

f=p=1/1+eYwherez = (w,w,w,) (o(s x),6(x),0(v x)). Now the loss is
probability and so we want to maximize this if the label y = 1 and maximize

f=1—-p=1— (1/(1 + e) ifthe label y = 0. We can write the objective as one function:

fr=ra-p"”

The empirical loss can be written as the likelihood which is a product of the above probabilities
as shown in equation 10.22 above.

. (1-y)
emploss = Hipy‘(l -p) g

By definition the loss function is to be minimized and so we take the negative log to convert this
to a machine learning loss function. We can now write the loss as

= —log(f) = —ylog(p) — (1 — Mlog(1l = p) == ylog((1/(1 +e))) = (1 = log((1 — 1/(1 + e

f
(see equations 10.22 and 10.23).

Let’s rewrite this succinctly as

f =—ylog(s) — (1 — y)log((1 — s))wheres = 1/(1 + e_Z).

We now proceed to derive the update equations for the final layer and intermediate layer
weights.

df/dw1 = df/dsds/dz dz/dw1 where df /ds =— y/s + (1 — y)(1/(1 — s)),ds/dz = s(1 — s)
, and dz/dw1 =O'(STX)

Similarly we get the weight updates for W, W,

Now we do the inner layer weights:

df/ds, = df/ds ds/dz dz/ds (can also be written as df /ds, = df/ds ds/dz dz/do do/ds

Ywhere dz/ds1 = Wlo(sTx)(l - G(sTx))xland the other derivatives are the same as above.

LV, V..

Similarly we derive weights for S,y UpUL,V, Y,

